MAT9004Assignment 1School of MathematicsMonash UniversityPresent your solution so that the sequence of logical steps is clear, with succinct justfication for each step where itis not obvious. Note that marks will be deducted for solutions that do not show all the important logical steps andreasoning in reaching a conclusion. Answers should consist of complete sentences with a mixture of English wordsand mathematical symbols. Marks can also be deducted if solutions are much more convoluted than required.Handwriting must be legible and all sketches must be neat.It is your responsibility to verify that what you upload is a complete and legible scan of your work. Assignmentsreceived after the due date will receive a late penalty, so we encourage you not to plan to submit last minute.Extensions are only given in exceptional cases, please consult Moodle and the special consideration guidelines.This assignment has 60 marks and is worth 30% of the final unit mark.Question 1.1 (15 marks)Answer the following and explain in full detail why your answer is correct.a) Is the function f : [0; 1) ! [0; 1) with f(x) = 4×4 + 12×2 + 9 bijective?b) Let E = f0; ±3; ±6; : : :g be the set of integers that are divisible by 3 and let T = f0; ±5; ±10; : : :gbe the set of integers that are divisible by 5. Is the function f : E ! T with f(x) = 5x=3 + 10bijective?c) Is the function f : [-2; 2] ! [-4; 4] with f(x) = x3 – 2x bijective?d) Is there a bijective function f : [-1; 1] ! [-50; 50]?e) If a convex function f : R ! R satisfies f(10) = -4 and f(20) = 30, what’s the smallest possiblevalue for f(7)?Question 1.2 (8 marks)A city experiences outbreaks of two variants of a virus. The psi variant outbreak begins with 4 people infected and grows exponentially so that every week the number of people infected is 1.5 times the numberthe week before. The omega variant outbreak begins exactly 2 weeks after the psi variant outbreak with 3people infected and grows exponentially so that every week the number of people infected doubles. Thiscontinues for 8 weeks after the first psi infection. (For the purposes of our model we allow the numberof people infected to take non-integer values.)a) How many people have each of the variants 8 weeks after the first psi variant infection?b) The city institutes a lockdown exactly 8 weeks after the first psi infection. During the lockdown thenumber of omega cases decreases exponentially so that every week the number of people infected is23times the number the week before. How long must the lockdown last before the omega variant iseliminated (assume this happens when the number of infected people reaches 1).c) At some point before the lockdown the number of people infected by each variant was equal. Exactlyhow long from the first psi infection did this occur?Question 1.3 (9 marks)A food company creates a type of mushroom with two species called moosh and room. To create enoughmushroom, they add b kg of moosh and z kg of room, which then start to grow continuously such thatevery three days the number of moosh doubles and every four days the number of room triples.a) When starting with b = 4, how many kg of moosh are in the mixture after 6 days?b) When starting with z = 6, how many kg of room are in the mixture after 8 days?c) The company starts with b = 4 and z = 3. To make sure that the final product is perfect (andcustomers don’t get sick), it is required that there are the same amount of room as moosh. If themushroom production starts Monday 6:00am, at what day and time is this achieved?Question 1.4 (12 marks)Determine the following derivatives and explain in detail what rule you have used in each of your stepswhen computing f0(x).Note: The aim of this exercise is to demonstrate that you can apply these rules correctly; in later assignments it will not be required to give the same level of justification.a) Compute f0(x) for f(x) = (2×2 + 3ex + 5)10.b) Compute f0(x) for f(x) = 6ln(5 xx).c) Compute f0(x) for f(x) = 102×2+x+10.Question 1.5 (8 marks)You run a coffee shop. At present you sell coffees for $4.00 and average 34 sales per hour. For every$1 increase (decrease) in your price you will average 20 fewer (more) sales per hour. For example, ata price of $4.50 you will average 24 sales per hour. Assume you cannot drop the price below the pointwhere you average 40 sales per hour (you will be too rushed) and cannot raise the price above the pointwhere you average 0 sales per hour.a) Find the function f(x) that outputs your average hourly revenue when you charge x dollars for acoffee. Be sure to give a suitable domain for f.b) By finding the global maximum of f, determine what coffee price maximises your average hourlyrevenue and what this maximum average hourly revenue is.c) Now suppose that you have the option of hiring an assistant barista. Doing this will allow you todrop prices below the point where you average 40 sales per hour (but not below $0, of course). Nowwhat coffee price maximises your average hourly revenue and what is this maximum average hourlyrevenue?Question 1.6 (8 marks)A pizza company is experimenting with a new yeast, called KABOOM. By adding x grams of KABOOMto each kilogram of their dough, the rise of the dough can be increased by a factor of f(x), wheref(x) = 2×3 – 9×2 + 12x + 3. However, if they add more than 2.4gram per kilogram, then the doughbecomes inedible.a) Determine the stationary points of f(x) on (-1; 1).b) Classify each of the stationary points determined in a): demonstrate this in two ways, firstly, by usingthe second derivative of f, secondly, by looking at the signs of f0(x).c) What’s the optimal value for x such that the dough remains edible and has the best rise?

- Assignment status: Already Solved By Our Experts
*(USA, AUS, UK & CA PhD. Writers)***CLICK HERE TO GET A PROFESSIONAL WRITER TO WORK ON THIS PAPER AND OTHER SIMILAR PAPERS, GET A NON PLAGIARIZED PAPER FROM OUR EXPERTS**

**NO PLAGIARISM**– CUSTOM PAPER